Role of The Purinergic Neuromodulation System in Epilepsy

نویسندگان

  • Ângelo R. Tomé
  • Henrique Silva
  • Rodrigo A. Cunha
چکیده

Adenosine has long been considered an endogenous anti-epileptic compound. This concept was based on the widespread distribution of adenosine A1 receptors (A1R), which are mostly located in excitatory synapses; here, A1R inhibit glutamate release, decrease glutamatergic responsiveness and hyperpolarise neurons. However, the combined observation that synaptic A1R undergo desensitisation in chronic noxious situations whereas the activation of A1R still prevents seizure activity suggests that the A1R anti-epileptic action may involve non-synaptic mechanisms. Two alternative mechanisms can be considered to explain the ability of A1R to control seizure activity and resulting neurodegeneration: 1) the possible role of A1R-mediated control of metabolism; 2) the A1R-mediated preconditioning involving a coordinated control of neuron-glia communication. However, purinergic modulation of seizure activity is likely to involve other systems apart from A1R. Thus, the blockade of adenosine A2A receptors (A2AR), which density increases in animal models of epilepsy, can attenuate seizure activity and prevent seizure-induced neurodegeneration. Furthermore, ATP, which is the main source of the endogenous adenosine activating A2AR, also act as a general danger signal and may also directly control seizure activity through P2 receptors (P2R). Therefore, the purinergic control of epilepsy may actually involve different parallel signalling arms, some beneficial and others deleterious, probably acting at different sites (in epileptic foci and in their neighbourhood) and at different times. It is likely that combined targeting of different purinergic receptors may be the most efficacious way to control seizure activity, its spreading and the resulting neurodegeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purinergic Signalling in the CNS

Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later it was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ion channel and G protein-coupled receptors for purines and pyrimidines are widely expressed in the ...

متن کامل

Purinergic signalling: past, present and future.

The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960's is described as well as the identification of adenosine 5'-triphosphate (ATP) as a transmitter in these nerves in the early 1970's. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and ce...

متن کامل

Epilepsy and dopaminergic system

Epilepsy is accompanied with a strong change in neuronal activity not only in excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmission, but also in neuromodulatory agents. Dopaminergic system, as an important neuromodulatory system of the brain, has significant effect on neuronal excitability. In addition, this system undergoes many changes in epileptic brain. Understanding the e...

متن کامل

P2X and P2Y Receptors—Role in the Pathophysiology of the Nervous System

Purinergic signalling plays a crucial role in proper functioning of the nervous system. Mechanisms depending on extracellular nucleotides and their P2 receptors also underlie a number of nervous system dysfunctions. This review aims to present the role of purinergic signalling, with particular focus devoted to role of P2 family receptors, in epilepsy, depression, neuropathic pain, nervous syste...

متن کامل

P 117: Endocannabinoid System as a Novel Therapeutic Target in Epilepsy

Endocannabinoid (ECB) system plays a vital role in responses to stress. Moreover, ECB and its receptors cause anti-inflammatory, anti-oxidative and neuroprotective effects by modulating neuronal, glial and endothelial cell functions. A number of studies have demonstrated ECB system notably defects in neurotraumatic and neurodegenerative diseases like epilepsy, TBI, Alzheimer’s disease and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010